CHEVRON 4H PLATFORMS SHELL MOUNDS DISPOSITION

ACOUSTIC MODEL OF EXPLOSIVE DEMOLITION OF PLATFORM HAZEL CAISSONS IN THE SANTA BARBARA CHANNEL

Prepared for

Science Applications International Corporation (SAIC)

525 Anacapa Street Santa Barbara, CA 93101

and

California State Lands Commission

100 Howe Avenue Suite 100 South Sacramento, CA 95625-8202

Prepared by

Niels K. Winsor, Ph.D. Marine Mammal Consulting Group

389 North Hope Avenue Santa Barbara, CA 93110-1572

November 2002

TABLE OF CONTENTS

1.0	EXECUTIVE SUMMARY Table 1. Predicted range (meters) for key thresholds at 86 ft. depth	1-3 2	
	Table 2. Predicted range (meters) for key thresholds at 6 ft. depth	2	
2.0	INTRODUCTION	4-9	
2.0	2.1 FACTORS IN MODELING		
	2.1.1 Caisson Structure	5-8 5	
	Figure 1. Top view of caisson	5	
	2.1.2 Caisson Demolition Strategy	5-6	
	2.1.2 Sound-attenuating berm	6-7	
	Figure 2. Profile of caisson and berm	7	
	2.1.4 Uncertainties in Estimates	7-8	
	2.1.4 Possible Anomalous Locations	8	
	2.2 BLAST PHYSICS AND NEED FOR MODELS	8-9	
	2.2.1 The Explosive Detonation	8	
	2.2.2 The Immediate Surroundings	8-9	
3.0	BACKGROUND	9-13	
3.0	3.1 SPECIFIC MODELS	10-13	
	3.1.1 Pressure in Ocean Water	10-13	
	3.1.2 Impulse Scaling in Ocean Water	11	
	3.1.3 Pulse Width Scaling in Ocean Water	11	
	3.1.4 Reflection, Refraction and Diffraction	11-12	
	3.1.5 Scattering and Absorption	12-13	
	3.1.3 Scattering and Absorption 3.2 DEPENDENCE ON LOCATION AND TERRAIN	13	
	3.3 GENERAL FEATURES OF ANALYSIS	13	
4.0	RESULTS	13-26	
4.0	4.1 METHODOLOGY	13-26	
	4.1.1 Near Field	14-15	
	4.1.1.1 Dynamics	14-10	
	4.1.1.2 Bubbles	14-15	
	4.1.2 Bubbles 4.1.2 Far Field	15	
	4.1.2.1 Scaling	15	
	4.1.2.2 Refraction	15	
	4.1.2.3 Scattering	15	
	4.2 GEOMETRY	15-16	
	Figure 3. Geometry of a caisson	16	
	4.3 NEAR FIELD RESULTS	16-18	
	Figure 4. Pressure shortly after detonation	17	
	Figure 5. Wave outgoing in all directions	18	
	4.4 FAR FIELD RESULTS	18-21	
	Figure 6. Sound pressure levels of the detonations	19	
	Figure 7. Impulse of the detonations	20	
	Figure 8. Energy Flux of the detonations	21	
	4.5 DIFFRACTION	21-22	
	Figure 9. Acoustic attenuation due to diffraction behind berm	21-22	
	4.6 KEY RANGES	22-25	
	Table 3. Key parameters at a depth of 96 ft. and various ranges	22-20	
	rapio di 1107 paramotoro at a abptir di 20 iti ana varibus fallabs		

		and directions	23	
	,	Table 4. Key parameters at a depth of 6 ft. and various ranges		
		and directions	24	
	4.7	SUMMARY OF RESULTS	25-27	
	,	Table 5. Summary of threshold ranges in meters at the depth of		
		the demolition (96 ft.)	25	
	,	Table 6. Summary of threshold ranges in meters 6 ft. below the		
		surface	26	
5.0	CONC	LUSIONS	26-27	
	5.1	RANGES	26	
	5.2	GENERAL CONCLUSIONS	26	
6.0	REFE	RENCES CONSULTED	26-27	
APPENDIX 1: GLOSSARY OF TERMS				
APPE	APPENDIX 2			
	2.1	CONVERSION TABLES	31-32	
		Table 7. Pressure conversions—large pressure intervals	30	
		Table 8. Pressure conversions—small pressure intervals	31	
	2.2	SCALING EQUATIONS	32-33	
	2.3	REFRACTION AND DIFFRACTION	33	
		Figure 10. Cornu spiral	33	